
Preprint ANL/MCS-P865-1200, December, 2000
Mathematics and Computer Science Division
Argonne National Laboratory

Stephen J. Wright?

Constraint Identi�cation and Algorithm

Stabilization for Degenerate Nonlinear Programs

December 19, 2000

Abstract. In the vicinity of a solution of a nonlinear programming problem at which both
strict complementarity and linear independence of the active constraints may fail to hold, we
describe a technique for distinguishingweakly active from strongly active constraints.We show
that this information can be used to modify the sequential quadratic programming algorithm
so that it exhibits superlinear convergence to the solution under assumptions weaker than
those made in previous analyses.
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1. Introduction

Consider the following nonlinear programming problem with inequality con-
straints:

NLP: min
z

�(z) subject to g(z) � 0; (1)

where � : IRn ! IR and g : IRn ! IR
m are twice Lipschitz continuously di�er-

entiable functions. Optimality conditions for (1) can be derived from the La-
grangian for (1), which is

L(z; �) = �(z) + �T g(z); (2)

where � 2 IR
m is the vector of Lagrange multipliers. When a constraint quali�-

cation holds at z� (see discussion below), the �rst-order necessary conditions for
z� to be a local solution of (1) are that there exists a vector �� 2 IR

m such that

Lz(z
�; ��) = 0; g(z�) � 0; �� � 0; (��)Tg(z�) = 0: (3)

These relations are the well-known Karush-Kuhn-Tucker (KKT) conditions. The
set B of active constraints at z� is

B = fi = 1; 2; : : : ;m j gi(z
�) = 0g: (4)
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It follows immediately from (3) that we can have ��i > 0 only if i 2 B. The weakly
active constraints are identi�ed by the indices i 2 B for which ��i = 0 for all
�� satisfying (3). Conversely, the strongly active constraints are those for which
��i > 0 for at least one multiplier �� satisfying (3). The strict complementarity
condition holds at z� if there are no weakly active constraints.

We are interested in degenerate problems, those for which the active con-
straint gradients at the solution is linearly dependent or the strict complemen-
tarity condition fails to hold (or both). The �rst part of our paper describes a
technique for partitioning B into weakly active and strongly active indices. Sec-
tion 3 builds on the technique described by Facchinei, Fischer, and Kanzow [5]
for identifying B. Our technique requires the solution of a sequence of closely
related linear programming subproblems in which the set of strongly active in-
dices is assembled progressively. Solution of one additional linear program yields
a Lagrange multiplier estimate � such that the components �i for all strongly
active indices i are bounded below by a positive constant.

In the second part of the paper, we use the cited technique to adjust the La-
grange multiplier estimate between iterations of the stabilized sequential quadratic
programming (sSQP) algorithm described by Wright [18] and Hager [8]. The re-
sulting technique has the advantage that it converges superlinearly under weaker
conditions than considered in these earlier papers. We can drop the assumption
of strict complementarity and a \su�ciently interior" starting point made in
[18], and we do not need the stronger second-order conditions of [8]. Motivation
for the sSQP approach came from work on primal-dual interior-point algorithms
described in [19,12]. It is also closely related to the method of multipliers and
the \recursive successive quadratic programming" approach of Bartholomew-
Biggs [2]. (See Wright [16, Section 6] for a discussion of the similarities.)

Other work on stabilization of the SQP approach to yield superlinear con-
vergence under weakened conditions has been performed by Fischer [6] and
Wright [16]. Fischer proposed an algorithm in which an additional quadratic
program is solved between iterations of SQP in order to adjust the Lagrange
multiplier estimate. He proved superlinear convergence under conditions that
are weaker than the standard assumptions but stronger than the ones made in
this paper. Wright described superlinear local convergence properties of a class
of inexact SQP methods and showed that sSQP and Fischer's method could be
expressed as members of this class. This paper also introduced a modi�cation of
standard SQP that enforced only a subset of the linearized constraints|those
in a \strictly active working set"|and permitted slight violations of the nonen-
forced constraints yet achieved superlinear convergence under weaker-than-usual
conditions.

Bonnans [3] showed that when strict complementarity fails to hold but the
active constraint gradients are linearly independent, then the standard SQP
algorithm (in which any nonuniqueness in the solution of the SQP subproblem
is resolved by taking the solution of minimum norm) converges superlinearly.

Our concern here is with local behavior, so we assume availability of a start-
ing point (z0; �0) that is \su�ciently close" to the optimal primal-dual set. We
believe, however, that ingredients of the approach proposed here can be embed-
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ded in practical algorithms, such as SQP algorithms that include modi�cations
(merit functions and �lters) to ensure global convergence. We believe also that
this approach could be used to enhance the robustness and convergence rate of
other types of algorithms, including augmented Lagrangian and interior-point
algorithms, in problems in which there is degeneracy at the solution. We mention
one such extension in Section 6.

2. Assumptions, Notation, and Basic Results

We now review the optimality conditions for (1) and outline the assumptions
that are used in subsequent sections. These include the second-order su�cient
condition we use here, the Mangasarian-Fromovitz constraint quali�cation, and
the de�nition of weakly-active indices.

Recall the KKT conditions (3). The set of \optimal" Lagrange multipliers ��

is denoted by S�, and the primal-dual optimal set is denoted by S. Speci�cally,
we have

S� = f�� j�� satis�es (3)g; S = fz�g � S�: (5)

An alternative, compact form of the KKT conditions is the following variational
inequality formulation:�

r�(z�) +rg(z�)��

g(z�)

�
2

�
0

N (��)

�
; (6)

where N (�) is the set de�ned by

N (�)
def
=

�
fy j y � 0 and yT� = 0g if � � 0,

; otherwise.
(7)

We now introduce notation for subsets of the set B of active constraint indices
at z�, de�ned in (4). For any optimalmultiplier�� 2 S�, we de�ne the set B+(��)
to be the \support" of ��, that is,

B+(�
�) = fi 2 B j ��i > 0g:

We de�ne B+ (without argument) as

B+
def
= [��2S� B+(�

�); (8)

this set contains the indices of the strongly active constraints. Its complement in
B is denoted by B0, that is,

B0
def
= BnB+:

This set B0 contains the weakly active constraint indices, those indices i 2 B
such that ��i = 0 for all �� 2 S�. In later sections, we make use of the quantity
�� de�ned by

��
def
= max

��2S�
min
i2B+

��i : (9)
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Note by the de�nition of B+ that �� > 0.
The Mangasarian-Fromovitz constraint quali�cation (MFCQ) [11] holds at

z� if there is a vector �y 2 IR
n such that

rgi(z
�)T �y < 0 for all i 2 B.

By de�ning rgB to be the n� jBj matrix whose rows are rgi(�), i 2 B, we can
write this condition alternatively as

rgB(z
�)T �y < 0: (10)

It is well known that MFCQ is equivalent to boundedness of the set S�; see
Gauvin [7].

Since S� is de�ned by the linear conditions r�(z�) +rg(z�)�� and �� � 0,
it is closed and convex. Therefore, under MFCQ, it is also compact.

We assume throughout that the following second-order condition is satis�ed:
there is � > 0 such that

wTLzz(z
�; ��)w � �kwk2; for all �� 2 S�; (11)

and for all w such that

rgi(z�)Tw = 0; for all i 2 B+;
rgi(z�)Tw � 0; for all i 2 B0:

(12)

This condition is referred to as Condition 2s.1 in [16, Section 3]. Weaker second-
order conditions, stated in terms of a quadratic growth condition of the objective
�(z) in a feasible neighborhood of z�, are discussed by Bonnans and Io�e [4] and
Anitescu [1].

Our standing assumption for this paper is as follows.

Assumption 1. The �rst-order conditions (3), the MFCQ (10), and the second-
order condition (11), (12) are satis�ed at z�. Moreover, the functions � and g
are twice Lipschitz continuously di�erentiable in a neighborhood of z�.

The following is an immediate consequence of this assumption.

Theorem 1. Suppose that Assumption 1 holds. Then z� is an isolated station-
ary point and a strict local minimizer of (1).

Proof. See Robinson [13, Theorems 2.2 and 2.4].

We use the notation �(�) to denote distances from the primal, dual, and
primal-dual optimal sets, according to context. Speci�cally, we de�ne

�(z)
def
= kz � z�k; �(�)

def
= dist (�;S�); �(z; �)

def
= dist ((z; �);S); (13)

where k � k denotes the Euclidean norm unless a subscript speci�cally indicates
otherwise. We also use P (�) to denote the projection of � onto S�; that is, we
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have P (�) 2 S� and kP (�) � �k = dist (�;S�). Note that from (13) we have
�(z)2 + �(�)2 = �(z; �)2, and therefore

�(z) � �(z; �); �(�) � �(z; �): (14)

Using Assumption 1, we can prove the following result, which gives a practical
way to estimate the distance �(z; �) of (z; �) to the primal-dual solution set S.

Theorem 2. Suppose that Assumption 1 holds. Then there are positive con-
stants �, �0, and �1 such that for all (z; �) with �(z; �) � �, the quantity �(z; �)
de�ned by

�(z; �)
def
=


�
Lz(z; �)

min(�;�g(z))

� (15)

(where min(�;�g(z)) denotes the vector whose ith component is min(�i;�gi(z)))
satis�es

�0�(z; �) � �(z; �) � �1�(z; �):

See Facchinei, Fischer, and Kanzow [5, Theorem 3.6], Wright [16, Theorem A.1],
and Hager and Gowda [9, Lemma 2] for proofs of this result. (The second-order
condition is stated in a slightly di�erent fashion in [5] but is equivalent to (11),
(12).)

We use order notation in the following (fairly standard) way: If two matrix,
vector, or scalar quantities M and A are functions of a common quantity, we
write M = O(kAk) if there is a constant � such that kMk � �kAk whenever
kAk is su�ciently small. We write M = 
(kAk) if there is a constant � such
that kMk � ��1kAk whenever kAk su�ciently small, and M = �(kAk) if both
M = O(kAk) and M = 
(kAk). We write M = o(kAk) if for all sequences fAkg
with kAkk ! 0, the corresponding sequence fMkg satis�es kMkk=kAkk ! 0. By
using this notation, we can rewrite the conclusion of Theorem 2 as follows:

�(z; �) = �(�(z; �)): (16)

3. Detecting Active Constraints

We now describe a procedure, named Procedure ID0, for identifying those in-
equality constraints that are active and the solution, and classifying them ac-
cording to whether they are weakly active or strongly active. We prove that Pro-
cedure ID0 classi�es the indices correctly given a point (z; �) su�ciently close to
the primal-dual optimal set S. Finally, we describe some implementation issues
for this procedure.
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3.1. The Detection Procedure

Facchinei, Fischer, and Kanzow [5] showed that the function �(z; �) de�ned in
(16) can be used as the basis of a scheme for identifying the active set B. Choosing
some � 2 (0; 1), they estimated

A(z; �)
def
= fi = 1; 2; : : : ;m j gi(z) � ��(z; �)

�g: (17)

We have the following result.

Theorem 3. Suppose that Assumption 1 holds. Then there exists � > 0 such
that for all (z; �) with �(z; �) � �, we have A(z; �) = B.

Proof. The result follows immediately from [5, De�nition 2.1, Theorem 2.3] and
Theorem 2 above.

A scheme for estimating B+ (hence, B0) is described in [5], but it requires
the strict MFCQ condition to hold, which implies that S� is a singleton. Here
we describe a more complicated scheme for estimating B+ that requires only the
conditions of Theorem 3 to hold.

Our scheme is based on linear programming subproblems of the following
form, for a given parameter � 2 (0; 1) and a given set Â � A(z; �):

max~�
P

i2Â
~�i subject to (18a)

��(z; �)� � r�(z) +
P

i2A(z;�)
~�irgi(z) � �(z; �)� (18b)

~�i � 0; for all i 2 A(z; �); ~�i = 0 otherwise: (18c)

Note that the objective function involves elements ~�i only for indices i in the
subset Â, whereas the ~�i are permitted to be nonzero for all i 2 A(z; �). The idea
is that Â contains those indices that may belong to B0; by the time we solve
(18), we have already decided that the other indices i 2 A(z; �)nÂ probably
belong to B+.

The complete procedure is as follows.

Procedure ID0
Given constants � and �̂ satisfying 0 < �̂ < � < 1, and point (z; �);
Evaluate �(z; �) from (15) and A(z; �) from (17);

De�ne Âinit = A(z; �)nfi j�i � �(z; �)�̂g;

Â  Âinit ;
repeat

solve (18) to �nd ~�;

set C = fi 2 Â j ~�i � �(z; �)�̂g;
if C = ;

stop with A0 = Â, A+ = A(z; �)nÂ;
else

set Â  ÂnC;
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if Â = ;
stop with A0 = ;, A+ = A(z; �);

end(if)
end(if)

end(repeat)

This procedure terminates �nitely; in fact, the number of times the \repeat"
loop executes is bounded by the cardinality of Âinit.

We prove that Procedure ID0 successfully identi�es B+ (for all �(z; �) su�-
ciently small) in several steps, culminating in Theorem 4. First, we estimate the
distance of (z; ~�) to the solution set S, where ~� is the solution of (18) for some
Â.

Lemma 1. Suppose that Assumption 1 holds. Then there are positive constants
�0 and �2 such that whenever �(z; �) � �0, any feasible point ~� of (18) at any
iteration of Procedure ID0 satis�es

�(z; ~�) � �2�(z; �)
� :

Proof. Initially choose �0 = � for � de�ned in Theorem 3, so that A(z; �) = B.
Hence, we have Â � B at all iterations of Procedure ID0.

We now estimate �(z; ~�) using the de�nition (15). We have directly from the
constraints (18b) that

kLz(z; ~�)k1 � �(z; �)� :

For the vector min(~�;�g(z)), we have for i 2 B that gi(z�) = 0 and ~�i � 0, and
so

i 2 B ) jmin(~�i;�gi(z))j � jgi(z)j = O(kz � z�k) = O(�(z; �)):

Meanwhile for i =2 B = A(z; �), we have ~�i = 0 and gi(z
�) < 0, and so

i =2 B ) jmin(~�i;�gi(z))j = max(0; gi(z)) � jgi(z) � gi(z
�)j = O(�(z; �)):

By substituting these estimates into (15), and using the equivalence of k � k1
and the Euclidean norm and the result of Theorem 2, we have that there is a
constant ��2 > 0 such that

�(z; ~�) � ��2�(z; �)
� :

Using Theorem 2 again, we have

�(z; ~�) � ��1
0 �(z; ~�) � ��1

0 ��2�(z; �)
� ; (19)

giving the result.

In the next two lemmas and Theorem 4, we show that for �(z; �) su�ciently
small, Procedure ID0 terminates with A0 = B0 and A+ = B+.

Lemma 2. Suppose that Assumption 1 holds. Then there is �1 > 0 such that
whenever �(z; �) � �1, Procedure ID0 terminates with B0 � A0.
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Proof. Since we know the procedure terminates �nitely, we need show only that
B0 � Â at all iterations of the procedure. Initially set �1 = �0 � �, so that
A(z; �) = B and the result of Lemma 1 holds. Suppose for contradiction there
is an index j 2 B0 such that j either is not included in the initial index set Âinit

or else is deleted from Â at some iteration of Procedure ID0.
Suppose �rst that j is not included in Âinit . Then we must have �j > �(z; �)�̂ ,

which by Theorem 2 implies that

�(z; �) � j�jj � �(z; �)�̂ � ��̂0�(z; �)
�̂ : (20)

However, by decreasing �1 and using �̂ 2 (0; 1), we can ensure that (20) does not
hold whenever �(z; �) � �1. Hence, j is included in Âinit.

Suppose now that j 2 B0 is deleted from Â at some subsequent iteration.
For this to happen, the subproblem (18) must have a solution ~� with

~�j > �(z; �)�̂ (21)

for some Â � B. Hence from Theorem 2, we have that

�(z; ~�) � ~�j > �(z; �)�̂ � ��̂0�(z; �)
�̂ : (22)

By combining the result of Lemma 1 with (22), we have that

�2�(z; �)
� � ��̂0�(z; �)

�̂ :

However, this inequality cannot hold when �(z; �) is smaller than (��̂0�
�1
2 )1=(���̂ ).

Therefore, by decreasing �1 if necessary, we have a contradiction in this case also.

Lemma 3. Suppose that Assumption 1 holds. Then there is �2 > 0 such that
whenever �(z; �) � �2, Procedure ID0 terminates with B+ � A+.

Proof. Given any j 2 B+, we have for su�ciently small choice of �2 that j 2
A(z; �). We prove the result by showing that Procedure ID0 cannot terminate
with j 2 A0.

We initially set �2 = �1, where �1 is the constant from Lemma2. (We reduce it
as necessary, but maintain �2 > 0, in the course of the proof.) For contradiction,
assume that there is j 2 B+ such that j 2 Â at all iterations of Procedure ID0,
including the iteration on which the procedure terminates and sets A0 = Â.
Recalling the de�nition (9) of ��, we use compactness of S� to choose �� 2 S�
such that �� = mini2B+ �

�
i . In particular, we have

��j � �� > 0

for our chosen index j. We claim that, by reducing �2 if necessary, we can ensure
that �� is feasible for (18) whenever �(z; �) � �2. Obviously, since A(z; �) = B
by Theorem 3, �� is feasible with respect to (18c). Since �� 2 S� and

kz � z�k � �(z; �) � ��1
0 �(z; �);
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we haver�(z) +
mX
i=1

��irgi(z)


1

=

r�(z)�r�(z�) +
mX
i=1

��i (rgi(z)�rgi(z
�))


1

� Mkz � z�k �M��1
0 �(z; �); (23)

for some constant M that depends on the norms of r2�(�) and r2gi(�), i 2 B+
in the neighborhood of z� and on a bound on the set S� (which is bounded,
because of MFCQ). Since � < 1 and since �(z; �) = �(�(z; �)), we can reduce
�2 if necessary to ensure that

M��1
0 �(z; �) < �(z; �)�

whenever �(z; �) � �2, thereby ensuring that the constraints (18b) are satis�ed
by ��.

Since �� is feasible for (18), a lower bound on the optimal objective is

X
i2Â

��i � ��j � ��:

However, since Procedure ID0 terminates with j 2 Â, we must have that C = ;
for the solution ~� of (18) with this particular choice of Â. But we can have C = ;
only if ~�i < �(z; �)�̂ for all i 2 Â, which means that the optimal objective is
no greater than m�(z; �)�̂ . But since �(z; �) = �(�(z; �)), we can reduce �2 if
necessary to ensure that

m�(z; �)�̂ < ��

whenever �(z; �) � �2. This gives a contradiction, so that A0 (which is set by
Procedure ID0 to the �nal Â) can contain no indices j 2 B+. Since B+ � B =
A(z; �) whenever �(z; �) � �2, we must therefore have B+ � A+, as claimed.

By using the quantity �2 from Lemma 3, we combine this result with Theo-
rem 3 and Lemma 2 to obtain the following theorem.

Theorem 4. Suppose that Assumption 1 holds. Then there is �2 > 0 such that
whenever �(z; �) � �2, Procedure ID0 terminates with A+ = B+ and A0 = B0.

3.2. Scheme for Finding an Interior Multiplier Estimate

We now describe a scheme for �nding a vector �̂ that is close to S� but not too
close to the relative boundary of this set. In other words, the quantity mini2B+ �̂i
is not too far from its maximum achievable value ��.

We �nd �̂ by solving a linear programming problem similar to (18) but con-

taining an extra variable to represent mini2B+ �̂i. We state this problem as
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follows:

maxt̂;�̂ t̂ subject to (24a)

t̂ � �̂i; for all i 2 A+; (24b)

��(z; �)� e � r�(z) +
P

i2A+
�̂irgi(z) � �(z; �)� e (24c)

�̂i � 0; for all i 2 A+; �̂i = 0 otherwise: (24d)

Theorem 5. Suppose that Assumption 1 holds. Then there is a positive number
�3 such that (24) is feasible and bounded whenever �(z; �) � �3, and its optimal
objective is at least �� (for �� de�ned in (9)). Moreover, there is a constant

�0 > 0 such that �(z; �̂) � �0�(z; �)� .

Proof. Let �� 2 S� be chosen so that �� = mini2B+ �
�
i . We show �rst that

(t̂; �̂) = (��; �
�) is feasible for (24), thereby proving that this linear program is

feasible and that the optimum objective value is at least ��.
Initially we set �3 = �2. By De�nition (9), the constraint (24b) is satis�ed

by (t̂; �̂) = (��; �
�). Since �(z; �) � �3 = �2, we have from Theorem 4 that

A+ = B+, so that (24d) also holds. Satisfaction of (24c) follows from (23), by

choice of �2. Moreover, it is clear from A+ = B+ that the optimal (t̂; �̂) will

satisfy t̂ = mini2B+ �̂i.
We now show that the problem (24) is bounded for �(z; �) su�ciently small.

Let �y be the vector in (10), and decrease �3 if necessary so that we can choose
a number � > 0 such that

�(z; �) � �3 ) �yTrgi(z) � ��; for all i 2 A+ = B+: (25)

From the constraints (24c) and the triangle inequality, we have that
X
i2A+

�̂i�y
Trgi(z)


1

� k�yTr�(z)k1 +

�yTr�(z) +
X
i2A+

�̂i�y
Trgi(z)


1

� k�yk1 kr�(z)k1 + k�yk1

r�(z) +
X
i2A+

�̂irgi(z)


1

� k�yk1 kr�(z)k1 + k�yk1�(z; �)
� :

However, from (25) and �̂i � 0, i 2 A+, we have that
X
i2A+

�̂i�y
Trgi(z)


1

�
�̂A+

1
�:

By combining these bounds, we obtain that�̂A+
1
� ��1k�yk1 [kr�(z)k1 + �(z; �)� ] ;
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whenever �(z; �) � �3, so that the feasible region for (24) is bounded, as claimed.

To prove our �nal claim that �(z; �̂) � �0�(z; �)� for some �0 > 0, we use
Theorem 2. We have from (24c) and the cited theorem thatLz(z; �̂)

1
� �(z; �)� � ��1�(z; �)

� :

For i 2 A+ = B+, we have from �̂i � �� and gi(z�) = 0 that

i 2 A+ )
���min(�̂i;�gi(z))

��� � jgi(z)j � jgi(z)� gi(z
�)j

= O(kz � z�k) = O(�(z; �)):

For i =2 A+, we have �̂i = 0 and gi(z
�) � 0, and so

i =2 A+ )
���min(�̂i;�gi(z))

��� = max(0; gi(z)) � jgi(z)� gi(z
�)j

= O(kz � z�k) = O(�(z; �)):

By substituting the last three bounds into (15) and applying Theorem 2, we
obtain the result.

3.3. Computational Aspects

Solution of the linear programs (18) is in general less expensive than solution
of the quadratic programs or complementarity problems that must be solved
at each step of an optimization algorithm with rapid local convergence. Linear
programming software is easy to use and readily available. Moreover, given a
point (z; �) with �(z; �) small, we can expect Âinit not to contain many more
indices than the weakly active set B0, so that few iterations of the \repeat" loop
in Procedure ID0 should be needed.

Finally, we note that when more than one iteration of the \repeat" loop is
needed in Procedure ID0, the linear programs to be solved at successive iterations
di�er only in the cost vector in (18a). Therefore, if the dual formulation of (18)
is used, the solution of one linear program can typically be obtained at minimal
cost from the solution of the previous linear program in the sequence. To clarify
this claim, we simplify notation and write (18) as follows:

max cT� subject to b1 � A� � b2; � � 0; (26)

where � = [�i]i2A(z;�), while c, b1, b2, and A are de�ned in obvious ways. In
particular, c is a vector with elements 0 and 1, with the 1's in positions corre-
sponding to the index set Â. The dual of (26) is

maxbT1 y1 + bT2 y2 subject to

�
AT �AT I

� 24y1y2
s

3
5 = �c; (y1; y2; s) � 0:
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When the set Â is changed, some of the 1's in the vector c are replaced by zeros.
When only a few such changes are made, and the previous optimal basis is used
to hot-start the method, we expect that only a few iterations of the dual simplex
method will be needed to recover the solution of the new linear program.

4. SQP and Stabilized SQP

In the best-known form of the SQP algorithm (with exact second-order infor-
mation), the following inequality constrained subproblem is solved to obtain the
step �z at each iteration:

min�z �zTr�(z) + 1
2�zTLzz(z; �)�z; (27)

subject to g(z) +rg(z)T�z � 0,

where (z; �) is the current primal-dual iterate. Denoting the Lagrange multipliers
for the constraints in (27) by �+, we see that the solution �z satis�es the
following KKT conditions (cf. (6)):�

Lzz(z; �)�z +r�(z) +rg(z)�+

g(z) +rg(z)T�z

�
2

�
0

N (�+)

�
; (28)

where N (�) is de�ned as in (7).
In the stabilized SQP method, we choose a parameter � � 0 and seek a

solution of the followingminimax subproblem for (�z; �+) such that (�z; �+��)
is small:

min
�z

max
�+�0

�zTr�(z) + 1
2�zTLzz(z; �)�z (29)

+(�+)T [g(z) +rg(z)T�z]� 1
2�k�

+ � �k2:

The parameter � can depend on an estimate of the distance �(z; �) to the primal-
dual solution set; for example, � = �(z; �)� for some � 2 (0; 1). We can also write
(29) as a linear complementarity problem, corresponding to (28), as follows:�

Lzz(z; �)�z +r�(z) +rg(z)�+

g(z) +rg(z)T�z � �(�+ � �)

�
2

�
0

N (�+)

�
: (30)

Li and Qi [10] derive a quadratic program in (�z; �+) that is equivalent to (29)
and (30):

min(�z;�+) �zTr�(z) + 1
2�zTLzz(z; �)�z + 1

2�k�
+k2; (31)

subject to g(z) +rg(z)T�z � �(�+ � �) � 0:

Under conditions stronger than those assumed in this paper, the results of
Wright [18] and Hager [8] can be used to show that the iterates generated by
(29) (or (30) or (31)) yield superlinear convergence of the sequence (zk; �k) of
Q-order 1+�. Our aim in the next section is to add a strategy for adjusting the
multiplier, with a view to obtaining superlinear convergence under a weaker set
of conditions.
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5. Multiplier Adjustment and Superlinear Convergence

We show in this section that through use of Procedure ID0 and the multiplier
adjustment strategy (24), we can devise a stabilized SQP algorithm that con-
verges superlinearly whenever the initial iterate (z0; �0) is su�ciently close to
the primal-dual solution set S. Only Assumption 1 is needed for this result.

Key to our analysis is Theorem 1 of Hager [8]. We state this result in Ap-
pendix A, using our current notation and making a slight correction to the
original statement. Here we state an immediate corollary of Hager's result that
applies under our standing assumption.

Corollary 1. Suppose that Assumption 1 holds, and let �� 2 S� be such that
��i > 0 for all i 2 B+. Then for any su�ciently large positive �0, there are
positive constants �0, �1,  � 1, and �� such that �0�0 < �1, with the following
property: For any (z0; �0) with

k(z0; �0)� (z�; ��)k � �0; (32)

we can generate an iteration sequence f(zk; �k)g, k = 0; 1; 2; : : :, by setting

(zk+1; �k+1) = (zk +�z; �+);

where, at iteration k, (�z; �+) is the local solution of the sSQP subproblem with

(z; �) = (zk; �k); � = �k 2 [�0kz
k � z�k; �1]; (33)

that satis�es (zk +�z; �+) � (z�; ��)
 � 

(z0; �0)� (z�; ��)
 : (34)

Moreover, we have

�(zk+1; �k+1) � ��
�
�(zk�k)2 + �k�(�

k)
�
: (35)

Recalling our de�nition (9) of ��, we de�ne the following parametrized subset
of S�:

S��
def
= f� 2 S� j min

i2B+
�i � ���g: (36)

It follows easily from the MFCQ assumption and (9) that S�� is nonempty, closed,
bounded, and therefore compact for any � 2 [0; 1].

We now show that the particular choice of stabilization parameter � =
�(z; �)� , for some � 2 (0; 1), eventually satis�es (33).

Lemma 4. Suppose the assumptions of Corollary 1 are satis�ed, and let ��

be as de�ned there. Let � be any constant in (0; 1). Then there is a quantity
�2 2 (0; �0] such that when (z0; �0) satis�es

k(z0; �0)� (z�; ��)k � �2; (37)

the results of Corollary 1 hold when we set the stabilization parameter at iteration
k to the following particular value:

� = �k = �(zk; �k)� : (38)
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Proof. We prove the result by showing that �k de�ned by (38) satis�es (33)
for some choice of �2. For contradiction, suppose that no such choice of �2 is
possible, so that for each ` = 1; 2; 3; : : :, there is a starting point (z0[`] ; �

0
[`]) with(z0[`]; �0[`])� (z�; ��)

 � `�1�0 (39)

such that the sequence
n�

zk[`]; �
k
[`]

�o
k=0;1;2;:::

generated from this starting point

in the manner prescribed by Corollary 1 with �k = �(zk[`] ; �
k
[`])

� eventually comes

across an index k` such that this choice of �k violates (33), that is, one of the
following two conditions holds:

�0

zk`[`] � z�
 > �(zk[`] ; �

k
[`])

� ; (40a)

�1 < �(zk[`] ; �
k
[`])

� : (40b)

Assume that k` is the �rst such index for which the violation (40) occurs. By
(34) and (39), we have that�zk`[`] ; �k`[`]�� (z�; ��)

 � 
�z0[`]; �0[`]�� (z�; ��)

 � `�1�0: (41)

Therefore by Theorem 2 and (13), we have for ` su�ciently large that

�
�
zk`[`] ; �

k`
[`]

��
zk`[`] � z�

 �
�
�
zk`[`] ; �

k`
[`]

��
�
�
zk`[`] ; �

k`
[`]

�
� ��0 �

�
zk`[`] ; �

k`
[`]

���1

� ��0

�zk`[`] ; �k`[`]�� (z�; ��)
��1

� ��0
��1���1

0 `1��: (42)

Hence, taking limits as ` " 1, we have that

�
�
zk`[`] ; �

k`
[`]

��
zk`[`] � z�

 !1 as ` " 1.

Dividing both sides of (40a) by
zk`[`] � z�

, we conclude from �niteness of �0

that (40a) is impossible.
By using Theorem 2 again together with (41), we obtain

�
�
zk`[`] ; �

k`
[`]

�
� �1�

�
zk`[`] ; �

k`
[`]

�
� �1

�zk`[`] ; �k`[`]�� (z�; ��)


� �1�0`
�1;

and therefore �
�
zk`[`] ; �

k`
[`]

��
! 0 as ` " 1. Hence, (40b) cannot occur either, and

the proof is complete.
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We now use a compactness argument to extend Corollary 1 from the single
multiplier �� in the relative interior of S� to the entire set S�� , for any � 2 (0; 1].

Theorem 6. Suppose that Assumption 1 holds, and �x � 2 (0; 1]. Then there

are positive constants �̂,  � 1, and � such that the following property holds:
Given (z0; �0) with

dist
�
(z0; �0);S��

�
� �̂;

the iteration sequence f(zk; �k)gk=0;1;2;::: generated in the manner described in
Corollary 1, with �k, k = 0; 1; 2 : : : chosen according to (38), satis�es the fol-
lowing relations:

�(zk+1; �k+1) � ��(zk; �k)1+� (43a)

�ki �
1

2
���; for all i 2 B+ and all k = 0; 1; 2 : : :: (43b)

Proof. For each �� 2 S�� , we use Corollary 1 to obtain positive constants �0(��)
(su�ciently large), �1(��), (��), and ��(��), using the argument �� for each
constant to emphasize the dependence on the choice of multiplier ��. In the
same vein, let �2(��) 2 (0; �0(��)] be the constant from Lemma 4. Now choose

�̂(��) > 0 for each �� 2 S�� in such a way that

0 < �̂(��) � 1
2�2(�

�); (44a)

(��)�̂(��) � 1
4���; (44b)

and consider the following open cover of S�� :

[��2S�
�

n
� j k�� ��k < �̂(��)

o
: (45)

By compactness of S�� , we can �nd a �nite subcover de�ned by points �̂
1; �̂2; : : : ; �̂f 2

S�� as follows:

S�� � V
def
= [j=1;2;:::;f

n
� j k�� �̂jk < �̂(�̂j)

o
: (46)

V is an open neighborhood of S�� . Now de�ne


def
= max

j=1;2;:::;f
(�̂j ); ��

def
= max

j=1;2;:::;f

��(�̂j); �
def
= max

j=1;2;:::;f
�̂(�̂j): (47)

Also, choose a quantity �̂ > 0 with the following properties:

�̂ � min
j=1;2;:::;f

�̂(�̂j) � �; (48a)n
� j dist(�;S��) � �̂

o
� V; (48b)

�̂ �
���
4

; (48c)

�̂ � 1: (48d)
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Now consider (z0; �0) with(z0; �0) � (z�; ��)
 � �̂; for some �� 2 S�� : (49)

We have dist(�0;S��) � �̂, and so �0 2 V. It follows that for some j = 1; 2; : : : ; f ,
we have

k�0 � �̂jk � �̂(�̂j): (50)

Moreover, since kz0 � z�k � �̂, we have from (48a) that(z0; �0) � (z�; �̂j)
 � �̂ + �̂(�̂j) � 2�̂(�̂j) � �2(�̂

j); (51)

where the �nal inequality follows from (44a). Application of Corollary 1 and
Lemma 4 now ensures that the stabilized SQP sequence starting at (z0; �0) with
� = �k chosen according to (38) yields a sequence f(zk�k)gk=0;1;2;::: satisfying(zk; �k)� (z�; �̂j)

 � (�̂j)
(z0; �0)� (z�; �̂j)


� 2(�̂j)�̂(�̂j) � 2�; (52)

where we used (47) to obtain the �nal inequality.
To prove (43a), we have from Lemma 4, Corollary 1, the bound (14), Theo-

rem 2, the de�nition (47), and the stabilizing parameter choice (38) that

�(zk+1; �k+1) � ��(�̂j)
�
�(zk; �k)2 + �k�(�

k)
�

� ��
�
�(zk; �k)2 + �(zk�k)��(zk; �k)

�
from (47) and (38)

� ��
�
�(zk; �k)2 + ��1 �(z

k; �k)1+�
�

from Theorem 2

� ��
�
(2�)1�� + ��1

�
�(zk; �k)1+� ;

where in the last line we use �(zk; �k) � dist((zk; �k);S��) � 2�. Therefore, the
result (43a) follows by setting � = ��

�
(2�)1�� + ��1

�
.

Finally, we have from (44b) (with �� = �̂j) and (52) that

dist
�
(zk; �k);S��

�
� 2(�̂j )�̂(�̂j) �

1

2
���:

Therefore, we have

i 2 B+ ) �ki � min
��2S�

�

��i �
1

2
��� � ��� �

1

2
��� =

1

2
���;

verifying (43b) and completing the proof.

We are now ready to state a stabilized SQP algorithm, in which multiplier
adjustment steps (consisting of Procedure ID0 followed by solution of (24)) are
applied when the convergence does not appear to be rapid enough.
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Algorithm sSQPa
given � 2 (0; 1), � and �̂ with 0 < �̂ < � < 1, tolerance tol;
given initial point (z0; �0) with �0 � 0;
k 0;
calculate A(z0; �0) from (17);

call Procedure ID0 to obtain A+, A0; solve (24) to obtain �̂0;

�0  �̂0;
repeat

solve (29) with (z; �) = (zk; �k) and � = �k = �(zk; �k)�

to obtain (�z; �+);
if �(zk +�z; �+) � �(zk; �k)1+�=2

(zk+1; �k+1) (zk +�z; �+);
k k + 1;

else
calculate A(zk; �k) from (17);

call Procedure ID0 to obtain A+, A0; solve (24) to obtain �̂k;

�k  �̂k;
end (if)

until �(zk; �k) < tol.

The following result shows that when (z0; �0) is close enough to S, the initial
call to Procedure ID0 is the only one needed.

Theorem 7. Suppose that Assumption 1 holds. Then there is a constant �� > 0
such that for any (z0; �0) with �(z0; �0) � ��, the \if" condition in Algorithm
sSQPa is always satis�ed, and the sequence �(zk; �k) converges superlinearly to
zero with Q-order 1 + �.

Proof. Our result follows from Theorems 5 and 6. Choose � = 1=2 in Theorem 6,

and let �̂, , and � be as de�ned there. Using also �3 and �0 from Theorem 5
and �� de�ned in (9), we choose �� as follows:

�� = min

0
@�3; �̂;

�
��
2�0

�1=�

;

 
�̂

�0

!1=�

;
1

(2�)1=�
; �0

�
�0
��1

�2=�
1
A : (53)

Now let (z0; �0) satisfy �(z0; �0) � ��, and let �̂0 be calculated from (24). From
Theorem 5 and (53), we have that

�(z0; �̂0) � �0�(z0; �0)� � �0��� �
1

2
�� (54)

and

�̂0i � ��; for all i 2 B+; (55a)

�̂0i = 0; for all i =2 B+: (55b)
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Since S� is closed, there is a vector �̂� 2 S� such that

�(z0; �̂0) =
(z0; �̂0) � (z�; �̂�)

 : (56)

From (54) and (55a), we have that

i 2 B+ ) �̂�i � �̂0i �
1

2
�� �

1

2
��;

so that �̂� 2 S�� for � = 1=2. We therefore have from (54), (56), and (53) that

dist((z0; �̂0);S��) =
(z0; �̂0)� (z�; �̂�)

 � �0��� � �̂: (57)

From here on, we set �0  �̂0, as in Algorithm sSQPa. Because of the last
bound, we can apply Theorem 6 to (z0; �0). We use this result to prove the
following claims. First,

�� � �(z0; �0) � 2�(z1; �1) � 4�(z2; �2) � � � � : (58)

Second,

�(zk+1; �k+1) � �(zk; �k)1+�=2; for all k = 0; 1; 2; : : :: (59)

We prove both claims by induction. For k = 0 in (58), we have from (57) and
�� � �̂ in (53) that �(z0; �0) � ��. Assume that the �rst k + 1 inequalities in (58)
have been veri�ed. From (43a) and (53), we have that

�(zk+1; �k+1) � ��(zk ; �k)1+� � �����(zk; �k) �
1

2
�(zk; �k);

so that the next inequality in the chain is also satis�ed. For (59), we have from
Theorem 2, (43a), and (58) that

�(zk+1; �k+1) � �1�(z
k+1; �k+1)

� ��1�(z
k; �k)1+�

� ��1��
�=2�(zk; �k)1+�=2

� ��1��
�=2�

�1��=2
0 �(zk; �k)1+�=2

� �(zk; �k)1+�=2;

where the last bound follows from (53). Hence, (59) is veri�ed, so that the
condition in the \if" statement of Algorithm sSQPa is satis�ed for all k =
0; 1; 2; : : :. Superlinear convergence with Q-order 1 + � follows from (43a).
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6. Summary and Possible Extensions

We have presented a technique for identifying the active inequality constraints
at a local solution of a nonlinear programming problem, where the standard
assumptions|existence of a strictly complementary solution and linear inde-
pendence of active constraints gradients|are replaced by weaker assumptions.
We have embedded this technique in a stabilized SQP algorithm, resulting in a
method that converges superlinearly under the weaker assumptions when started
at a point su�ciently close to the (primal-dual) optimal set.

The primal-dual algorithm described by Vicente and Wright [14] can also be
improved by using the techniques outlined here. In that paper, strict comple-
mentarity is assumed along with MFCQ, and superlinear convergence is proved
provided both �(z0; �0) is su�ciently small and �0i � , for all i 2 B = B+ and
some  > 0. If we apply the active constraint detection procedure (17) and the
subproblem (24) to any initial point (z0; �0) with �(z0; �0) su�ciently small,
the same convergence result can be obtained without making the positivity as-
sumption on the components of �0B+ . (Because of the strict complementarity

assumption, Procedure ID0 serves only to verify that B = B+.)
Numerous issues remain to be investigated. We believe that degeneracy is

an important issue, given the large size of many modern applications of non-
linear programming and their nature as discretizations of continuous problems.
Nevertheless, the practical usefulness of constraint identi�cation and stabiliza-
tion techniques remains to be investigated. The numerical implications should
also be investigated, since implementation of these techniques may require so-
lution of ill-conditioned systems of linear equations (see M. H. Wright [15] and
S. J. Wright [17]). Embedding of these techniques into globally convergence algo-
rithmic frameworks needs to be examined. We should investigate generalization
to equality constraints, possibly involving the use of the \weak" MFCQ con-
dition, which does not require linear independence of the equality constraint
gradients.
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A. Hager's Theorem

We restate Theorem 1 of Hager [8], making a slight correction to the original
statement concerning the conditions on (z0; �0) and the radius of the neighbor-
hood containing the sequence f(zk; �k)g. No modi�cation to Hager's analysis is
needed to prove the following version of this result.

Theorem 8. Suppose that z� is a local solution of (1), and that � and g are
twice Lipschitz continuously di�erentiable in a neighborhood of z�. Let �� be
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some multiplier such that the KKT conditions (3) are satis�ed, and de�ne

�B
def
= fi j��i > 0g:

Suppose that there is an � > 0 such that

wTLzz(z
�; ��)w � �kwk2; for all w such that rgi(z�)Tw = 0, for all i 2 �B:

Then for any choice of �0 su�ciently large, there are positive constants �0, �1,
 � 1, and �� such that �0�0 < �1, with the following property: For any (z0; �0)
with

k(z0; �0)� (z�; ��)k � �0;

we can generate an iteration sequence f(zk; �k)g, k = 0; 1; 2; : : :, by setting

(zk+1; �k+1) = (zk +�z; �+);

where, at iteration k, (�z; �+) is the local solution of the sSQP subproblem with

(z; �) = (zk; �k); � = �k 2 [�0kz
k � z�k; �1];

that satis�es (zk +�z; �+) � (z�; ��)
 � 

(z0; �0)� (z�; ��)
 :

Moreover, we have

�(zk+1; �k+1) � ��
�
�(zk�k)2 + �k�(�

k)
�
:
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